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Sequences

A sequence is a function whose domain is the set of positive integers.
Although it is a function, it is common to represent sequences by
subscript notation.

For instance, in the sequence

1, 2, 3, 4, . . . , n, . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ Sequence
a1, a2, a3, a4, . . . , an, . . .

1 is mapped onto a1, 2 is mapped onto a2, and so on.

The numbers a1, a2, a3, . . . , an, . . . are the terms The number an is
the nth term of the sequence, and the entire sequence is denoted by
{an}.
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Example 1 (Writing the terms of a sequence)

a. The terms of the sequence {an} = {3 + (−1)n} are

b. The terms of the sequence {bn} =
{

n
1−2n

}
are

c. The terms of the sequence {cn} =
{

n2

2n−1

}
are

d. The terms of the recursively defined sequence {dn}, where d1 = 25
and dn+1 = dn − 5, are
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Sequences whose terms approach limiting values are said to converge.
For instance, the sequence {1/2n}

1

2
,

1

4
,

1

8
,

1

16
,

1

32
, . . .

converges to 0, as indicated in the following definition.

Definition 9.1 (The limit of a sequence)

Let L be a real number. The limit of a sequence {an} is L, written as

lim
n→∞

an = L

if for each ε > 0, there exists M > 0 such that |an − L| < ε whenever
n > M. If the limit L of a sequence exists, then the sequence converges to
L. If the limit of a sequence does not exist, then the sequence diverges.
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Graphically, this definition says that eventually (for n > M and ε > 0)
the terms of a sequence that converges to L will lie within the band
between the lines y = L+ ε and y = L− ε as shown below:

If a sequence {an} agrees with a function f at every positive integer,
and if f (x) approaches a limit L as x → ∞, the sequence must
converge to the same limit L.
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Theorem 9.1 (Limit of a sequence)

Let L be a real number. Let f be a function of a real variable such that

lim
x→∞

f (x) = L.

If {an} is a sequence such that f (n) = an for every positive integer n, then

lim
n→∞

an = L.
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Example 2 (Finding the limit of a sequence)

Find the limit of the sequence whose nth term is

an =

(
1 +

1

n

)n

.
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Theorem 9.2 (Properties of limits of sequences)

Let limn→∞ an = L and limn→∞ bn = K .
1. Scalar multiple : limn→∞ can = cL, c is any real number

2. Sum or difference : limn→∞ (an ± bn) = L± K

3. Product : limn→∞(anbn) = LK

4. Quotient : limn→∞
an
bn

= L
K , bn ̸= 0 and K ̸= 0
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Example 3 (Determining convergence or divergence)

a. {an} = {3 + (−1)n}
b. {bn} = { n

1−2n}
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Example 4 (Using L’Hôpital’s Rule to determine convergence)

Show that the sequence whose nth term is an = n2

2n−1 converges.
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The symbol n! is used to simplify some of the formulas. Let n be a
positive integer; then n factorial is defined as
n! = 1 · 2 · 3 · 4 · · · (n − 1) · n.
As a special case, zero factorial is defined as 0! = 1. From this
definition, you can see that 1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6,
and so on.

Factorial follows the same conventions for order of operations as
exponents. That is, 2n! = 2(n!) is different from (2n)!

Commonly used ordering If a > 0 and b > 1, then

ln n ≺ na ≺ bn ≺ n!

where an ≺ bn denotes that limn→∞
an
bn

= 0.
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Theorem 9.3 (Squeeze Theorem for sequences)

If
lim
n→∞

an = L = lim
n→∞

bn

and there exists an integer N such that an ≤ cn ≤ bn for all n > N, then

lim
n→∞

cn = L.
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Example 5 (Using the Squeeze Theorem)

Show that the sequence {cn} =
{
(−1)n 1

n!

}
converges, and find its limit.
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Figure 1: For n ≥ 4, (−1)n/n! is squeezed between −1/2n and 1/2n.
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Theorem 9.4 (Absolute Value Theorem)

For the sequence {an}, if

lim
n→∞

|an| = 0 then lim
n→∞

an = 0.
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Pattern recognition for sequences

Sometimes the terms of a sequence are generated by some rule that
does not explicitly identify the nth term of the sequence.

In such cases, you may be required to discover a pattern in the
sequence and to describe the nth term.

Once the nth term has been specified, you can investigate the
convergence or divergence of the sequence.
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Example 6 (Finding the nth term of a sequence)

Find a sequence {an} whose first five terms are

1

2
,
3

4
,
5

8
,

7

16
,

9

32
, . . .

and then determine whether the sequence converges or diverges.
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Example 7 (Finding the nth term of a sequence)

Determine an nth term for a sequence whose first five terms are

−2

1
,
8

2
, −26

6
,
80

24
, −242

120
, . . .

and then decide whether the sequence converges or diverges.
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The process of determining an nth term from the pattern observed in
the first several terms of a sequence is an example of
inductive reasoning.
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Monotonic sequences and bounded sequences

Definition 9.2 (Monotonic sequence)

A sequence {an} is monotonic if its terms are nondecreasing

a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ · · ·

or if its terms are nonincreasing

a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ · · · .
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Example 8 (Determining whether a sequence is monotonic)

Determine whether each sequence having the given nth term is monotonic.
a. an = 3 + (−1)n b. bn = 2n

1+n c. n2

2n−1
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(a) Not monotonic. (b) Monotonic. (c) Not monotonic.

Figure 2: Graphically illustrates three sequences.
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Definition 9.3 (Bounded sequence)

1 A sequence {an} is bounded above if there is a real number M such
that an ≤ M for all n. The number M is called an upper bound of the
sequence.

2 A sequence {an} is bounded below if there is a real number N such
that N ≤ an for all n. The number N is called a lower bound of the
sequence.

3 A sequence {an} is bounded if it is bounded above and bounded
below.
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One important property of the real numbers is that they are complete.
This means that there are no holes or gaps on the real number line.
(The set of rational numbers do not have the completeness property.)

The completeness axiom for real numbers can be used to conclude
that if a sequence has an upper bound, it must have a
least upper bound (an upper bound that is smaller than all other
upper bounds for the sequence).

For example, the least upper bound of the sequence
{an} = {n/(n + 1)},

1

2
,
2

3
,
3

4
,
4

5
, . . . ,

n

n + 1
, . . .

is 1.
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Theorem 9.5 (Bounded monotonic sequences)

If a sequence {an} is bounded and monotonic, then it converges.

Example 9 (Bounded and monotonic sequences)

Determine whether or not the following sequences are bounded or
convergent.

a. {an} =
{
1
n

}
b. {bn} =

{
n2

(n+1)

}
c. {cn} = {(−1)n}
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Infinite series

Infinite sequences can be used to represent infinite summations.

Informally, if {an} is an infinite sequence, then

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · · Infinite series

is an infinite series (or simply a series).

The numbers a1, a2, a3, are the terms of the series.

For some series, it is convenient to begin the index at n = 0 (or some
other integer) and it is common to represent an infinite series as
simply

∑
an.
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To find the sum of an infinite series, consider the following

S1 = a1 S2 = a1 + a2 S3 = a1 + a2 + a3

S4 = a1 + a2 + a3 + a4 S5 = a1 + a2 + a3 + a4 + a5 · · ·
Sn = a1 + a2 + a3 + · · ·+ an

If this sequence of partial sums converges, the series is said to
converge.
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Definition 9.4 (Convergent and divergent series)

For the infinite series
∑∞

n=1 an the nth partial sum is given by

Sn = a1 + a2 + · · ·+ an.

If the sequence of partial sums {Sn} converges to S , then the series∑∞
n=1 an converges. The limit S is called the sum of the series.

S = a1 + a2 + · · ·+ an + · · · S =
∞∑
n=1

an

If {Sn} diverges, then the series diverges.
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Example 1 (Convergent and divergent series)

a.
∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+ · · ·

b.

∞∑
n=1

(
1

n
− 1

n + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

c.
∞∑
n=1

1 = 1 + 1 + 1 + 1 + · · ·
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Example 2 (Writing a series in telescoping form)

Find the sum of the series
∑∞

n=1
2

4n2−1
.
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Geometric series

The series
∑∞

n=1
1
2n = 1

2 + 1
4 + 1

8 + 1
16 + · · · is a geometric series.

In general, the series is given by

∞∑
n=0

arn = a+ ar + ar2 + · · ·+ arn + · · · , a ̸= 0

is a geometric series with ratio r .

Theorem 9.6 (Convergence of a geometric series)

A geometric series with ratio r diverges if |r | ≥ 1. If 0 < |r | < 1, then the
series converges to the sum

∞∑
n=0

arn =
a

1− r
, 0 < |r | < 1.
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Example 3 (Convergent and divergent geometric series)

a.

∞∑
n=0

3

2n
=

∞∑
n=0

3

(
1

2

)n

= 3(1) + 3

(
1

2

)
+ 3

(
1

2

)2

+ · · ·

b.
∞∑
n=0

(
3

2

)n

= 1 +
3

2
+

9

4
+

27

8
+ · · ·
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Example 4 (A geometric series for a repeating decimal)

Use a geometric series to write 0.08 as the ratio of two integers.
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Theorem 9.7 (Properties of infinite series)

Let
∑

an and
∑

bn be convergent series, and let A, B, and c be real
numbers. If

∑∞
n=1 an = A and

∑∞
n=1 bn = B, then the following series

converge to the indicated sums.

1
∑∞

n=1 can = cA

2
∑∞

n=1(an + bn) = A+ B

3
∑∞

n=1(an − bn) = A− B
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nth-term test for a convergent series

Theorem 9.8 (Limit of the nth term of a convergent series)

If
∑∞

n=1 an is convergent, then limn→∞ an = 0.
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The contrapositive of Theorem 9.8 provides a useful test for
divergence.

This nth-Term Test for Divergence states that if the limit of the nth
term of a series does not converge to 0, the series must diverge.

Theorem 9.9 (nth-term test for divergent)

If limn→∞ an ̸= 0, then
∑∞

n=1 an diverges.

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 41 / 160



Example 5 (Using the nth-term test for divergent)

a. For the series
∑∞

n=0 2
n

b. For the series
∑∞

n=1
n!

2n!+1

c. For the series
∑∞

n=1
1
n

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 42 / 160



Table of Contents

1 Sequences

2 Series and convergence

3 The Integral Test and p-series

4 Comparisons of series

5 Alternating series

6 The Ratio and Root Test

7 Taylor polynomials and approximations

8 Power series

9 Representation of functions by power series

10 Taylor and Maclaurin series

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 43 / 160



The Integral Test

Theorem 9.10 (The Integral Test)

If f is positive, continuous, and decreasing for x ≥ 1 and an = f (n), then

∞∑
n=1

an and

∫ ∞

1
f (x) dx

either both converge or both diverge.
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Example 1 (Using the Integral Test)

Apply the Integral Test to the series
∑∞

n=1
n

n2+1
.
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Example 2 (Using the Integral Test)

Apply the Integral Test to the series
∑∞

n=1
1

n2+1
.
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p-series and harmonic series

A second type of series has a simple arithmetic test for convergence
or divergence has the form

∞∑
n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+ · · ·

which is a p-series, where p is a positive constant.

For p = 1, the series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·

is the harmonic series.

A general harmonic series is of the form
∑ 1

(an+b) .
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Theorem 9.11 (Convergence of p series)

The p-series
∞∑
n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+

1

4p
+ · · ·

1. converges if p > 1, and 2. diverges if 0 < p ≤ 1.
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Example 3 (Convergent and divergent p series)

Discuss the convergence or divergence of
a. the harmonic series and b. the p-series with p = 2.
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Example 4 (Testing a series for convergence)

Determine whether the following series converges or diverges.

∞∑
n=2

1

n ln n
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Direct comparison test

For the convergence tests the terms of the series have to be fairly
simple and the series must have special characteristics in order for the
convergence tests to be applied.

A slight deviation from these special characteristics can make a test
nonapplicable!

For example, in the following pairs, the second series cannot be tested
by the same convergence test as the first series even though it is
similar to the first!

1
∑∞

n=0
1
2n is geometric, but

∑∞
n=0

n
2n is not.

2
∑∞

n=1
1
n3 is a p-series, but

∑∞
n=1

1
n3+1 is not.

3 an = n
(n2+3)2 is easily integrated, but bn = n2

(n2+3)2 .
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Theorem 9.12 (Direct Comparison Test)

Let 0 < an ≤ bn for all n.
1. If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

2. If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.
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Example 1 (Using the Direct Comparison Test)

Determine the convergence or divergence of
∑∞

n=1
1

2+3n .
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Example 2 (Using the Direct Comparison Test)

Determine the convergence or divergence of
∑∞

n=1
1

2+
√
n
.
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Remember that both parts of the Direct Comparison Test require that
0 < an ≤ bn. Informally, the test says the following about the two
series with nonnegative terms.

1. If the “larger” series converges, the “smaller” series must also converge.
2. If the “smaller” series diverges, the “larger” series must also diverge.
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Limit comparison test

Often a given series closely resembles a p-series or a geometric series,
yet you cannot establish the term-by-term comparison necessary to
apply the Direct Comparison Test. Under these circumstances you
may be able to apply a second comparison test, called the
Limit Comparison Test.

Theorem 9.13 (Limit Comparison Test)

Suppose that an > 0, bn > 0, and

lim
n→∞

(
an
bn

)
= L

where L is finite and positive. Then the two series
∑

an and
∑

bn either
both converge or both diverge.
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Example 3 (Using the Limit Comparison Test)

Show that the following general harmonic series diverges.

∞∑
n=1

1

an + b
, a > 0, b > 0
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The Limit Comparison Test works well for comparing a ”messy”
algebraic series with a p-series.

Given Series Comparison Series Conclusion∑∞
n=1

1
3n2−4n+5

∑∞
n=1

1
n2

Both series converge.∑∞
n=1

1√
3n−2

∑∞
n=1

1√
n

Both series diverge.∑∞
n=1

n2−10
4n5+n3

∑∞
n=1

n2

n5
=

∑∞
n=1

1
n3

Both series converge.

When choosing a series for comparison, you can disregard all but the
highest powers of n in both the numerator and the denominator.
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Example 4 (Using the Limit Comparison Test)

Determine the convergence or divergence of
∑∞

n=1

√
n

n2+1
.
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Example 5 (Using the Limit Comparison Test)

Determine the convergence or divergence of
∑∞

n=1
n2n

4n3+1
.
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Alternating series

The simplest series that contains both positive and negative terms is
an alternating series, whose terms alternate in sign.

For example, the geometric series

∞∑
n=0

(
−1

2

)n

=
∞∑
n=0

(−1)n
1

2n
= 1− 1

2
+

1

4
− 1

8
+

1

16
− · · ·

is an alternating geometric series with r = −1/2.

Alternating series occur in two ways: either the odd terms are
negative or the even terms are negative.
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Theorem 9.14 (Alternating Series Test)

Let an > 0. The alternating series

∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an

converge if the following two conditions are met.
1. limn→∞ an = 0 2. an+1 ≤ an, for all n

Remark

The second condition in the Alternating Series Test can be modified to
require only that 0 < an+1 ≤ an for all n greater than some integer N.
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Example 1 (Using the Alternating Comparison Test)

Determine the convergence or divergence of
∑∞

n=1(−1)n+1 1
n .
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Example 2 (Using the Alternating Series Test)

Determine the convergence or divergence of
∑∞

n=1
n

(−2)n−1 .
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Example 3 (When the Alternating Series Test does not apply)

a.
∞∑
n=1

(−1)n+1(n + 1)

n
=

2

1
− 3

2
+

4

3
− 5

4
+

6

5
− · · ·

b.
2

1
− 1

1
+

2

2
− 1

2
+

2

3
− 1

3
+

2

4
− 1

4
+ · · ·
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To conclude that the second series diverges, you can argue that S2N
equals the Nth partial sum of the divergent harmonic series.

This implies that the sequence of partial sums diverges. So, the series
diverges.
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Alternating series remainder

For a convergent alternating series, the partial sum SN can be a
useful approximation for the sum S of the series. The error involved
in using S ≈ SN is the remainder RN = S − SN .

Theorem 9.15 (Alternating Series Remainder)

If a convergent alternating series satisfies the condition an+1 ≤ an, then
the absolute value of the remainder RN involved in approximating the sum
S by SN is less than (or equal to) the first neglected term. That is,

|S − SN | = |RN | ≤ aN+1.
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Example 4 (Approximating the sum of an alternating series)

Approximate the sum of the following series by its first six terms.

1− e−1 =
∞∑
n=1

(−1)n+1

(
1

n!

)
=

1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!
+ · · ·
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Absolute and conditional convergence

Occasionally, a series may have both positive and negative terms and
not be an alternating series. For instance, the series

∞∑
n=1

sin n

n2
=

sin 1

1
+

sin 2

4
+

sin 3

9
+ · · ·

is not an alternating series.

One way to obtain some information about the convergence of this
series is to investigate the convergence of the series

∞∑
n=1

∣∣∣∣sin nn2

∣∣∣∣ .
By direct comparison, you have | sin n| ≤ 1 for all n, so∣∣∣∣sin nn2

∣∣∣∣ ≤ 1

n2
, n ≥ 1.
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Therefore, by the Direct Comparison Test, the series
∑∣∣ sin n

n2

∣∣
converges.

Theorem 9.16 (Absolute convergence)

If the series
∑

|an| converges, then the series
∑

an also converges.

The converse of Theorem 9.16 is not true. For instance, the
alternating harmonic series

∞∑
n=1

(−1)n+1

n
=

1

1
− 1

2
+

1

3
− 1

4
+ · · ·

converges by the Alternating Series Test. Yet the harmonic series
diverges. This type of convergence is called conditional.
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Definition 9.5 (Absolute and conditional convergence)

1
∑

an is absolutely convergent if
∑

|an| converges.
2

∑
an is conditionally convergent if

∑
an converges but

∑
|an|

diverges.
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Example 6 (Absolute and conditional convergence)

Determine whether each of the series is convergent or divergent. Classify
any convergent series as absolutely or conditionally convergent.
a.

∑∞
n=0

(−1)nn!
2n = 0!

20
− 1!

21
+ 2!

22
− 3!

23
+ · · ·

b.
∑∞

n=1
(−1)n√

n
= − 1√

1
+ 1√

2
− 1√

3
+ 1√

4
− · · ·
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Example 7 (Absolute and conditional convergence)

Determine whether each of the series is convergent or divergent. Classify
any convergent series as absolutely or conditionally convergent.

a.
∑∞

n=1
(−1)n(n+1)/2

3n = −1
3 − 1

9 + 1
27 + 1

81 − · · ·
b.

∑∞
n=1

(−1)n

ln(n+1) = − 1
ln 2 + 1

ln 3 − 1
ln 4 + 1

ln 5 − · · ·
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Rearrangement of series

A finite sum such as (1 + 3− 2 + 5− 4) can be rearranged without
changing the value of the sum.

This is not necessarily true of an infinite series — it depends on
whether the series is absolutely convergent (every rearrangement has
the same sum) or conditionally convergent.
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Example 8 (Rearrangement of a series)

The alternating harmonic series converges to ln 2. That is,

∞∑
n=1

(−1)n+1 1

n
=

1

1
− 1

2
+

1

3
− 1

4
+ · · · = ln 2.

Rearrange the series to produce a different sum.
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The Ratio Test

This section begins with a test for absolute convergence — the
Ratio Test.

Theorem 9.17 (Ratio Test)

Let
∑

an be a series with nonzero terms.

1
∑

an converges absolutely if limn→∞

∣∣∣an+1

an

∣∣∣ < 1.

2
∑

an diverges if limn→∞

∣∣∣an+1

an

∣∣∣ > 1 or limn→∞

∣∣∣an+1

an

∣∣∣ = ∞.

3 The Ratio Test is inconclusive if limn→∞

∣∣∣an+1

an

∣∣∣ = 1.

Remark

Although the Ratio Test is not a cure for all ills related to testing for
convergence, it is particularly useful for series that converge rapidly. Series
involving factorials or exponentials are frequently of this type.
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Example 1 (Using the Ratio Test)

Determine the convergence or divergence of
∑∞

n=0
2n

n! .
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Example 2 (Using the Ratio Test)

Determine whether each series converges or diverges.
a.

∑∞
n=0

n22n+1

3n b.
∑∞

n=1
nn

n!
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Example 3 (A failure of the Ratio Test)

Determine the convergence or divergence of
∑∞

n=1(−1)n
√
n

n+1 .
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The Root Test

The next test for convergence or divergence of series works especially
well for series involving nth powers.

Theorem 9.18 (Root Test)

Let
∑

an be a series.

1
∑

an converges absolutely if limn→∞
n
√
|an| < 1.

2
∑

an diverges if limn→∞
n
√

|an| > 1 or limn→∞
n
√
|an| = ∞.

3 The Root Test is inconclusive if limn→∞
n
√
|an| = 1.

Remark

The Root Test is always inconclusive for any p-series.
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Example 4 (Using the Root Test)

Determine the convergence or divergence of
∑∞

n=1
e2n

nn .
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Strategies for testing series

Does the nth term approach 0? If not, the series diverges.

Is the series one of the special types — geometric, p-series,
telescoping, or alternating?

Can the Integral Test, the Root Test, or the Ratio Test be applied?

Can the series be compared favorably to one of the special types?
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Example 5 (Applying the strategies for testing series)

Determine the convergence or divergence of

a.
∑∞

n=1
n+1
3n+1 b.

∑∞
n=1

(
π
6

)n
c.

∑∞
n=1 ne

−n2

d.
∑∞

n=1
1

3n+1 e.
∑∞

n=1(−1)n 3
4n+1 f.

∑∞
n=1

n!
10n

g.
∑∞

n=1

(
n+1
2n+1

)n
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Polynomial approximations of elementary functions

To find a polynomial function P that approximates another function
f , begin by choosing a number c in the domain of f at which f and
P have the same value. That is,

P(c) = f (c). Graphs of f and P pass through (c, f (c))

The approximating polynomial is said to be expanded about c or
centered at c .

Geometrically, the requirement that P(c) = f (c) means that the
graph of P passes through the point (c , f (c)). Of course, there are
many polynomials whose graphs pass through the point (c , f (c)).
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To find a polynomial whose graph resembles the graph of f near this
point. One way to do this is to impose the additional requirement
that the slope of the polynomial function be the same as the slope of
the graph of f at the point (c, f (c)).

P ′(c) = f ′(c). Graphs of f and P have the same at (c , f (c))

With these two requirements, you can obtain a simple linear
approximation of f , as shown in Figure 3.

Figure 3: Near (c , f (c)), the graph of P can be used to approximate the graph of
f .
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Example 1 (First-degree polynomial approximation of f (x) = ex)

For the function f (x) = ex , find a first-degree polynomial function

P1(x) = a0 + a1x

whose value and slope agree with the value and slope of f at x = 0.
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Figure 4: P1(x) = 1+ x is the first-degree polynomial approximation of f (x) = ex .
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Example 2 (Third-degree polynomial approximation of f (x) = ex)

Construct a table comparing the values of the polynomial

P3(x) = 1 + x +
1

2
x2 +

1

3!
x3

with f (x) = ex for several values of x near 0.

x −1.0 −0.2 −0.1 0 0.1 0.2 1.0

ex 0.3679 0.81873 0.904837 1 1.105171 1.22140 2.7183

P3(x) 0.3333 0.81867 0.904833 1 1.105167 1.22133 2.6667

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 95 / 160



Taylor and Maclaurin polynomials

The polynomial approximation of f (x) = ex is expanded about c = 0.
For expansions about an arbitrary value of c , it is convenient to write
the polynomial in the form

Pn(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·+ an(x − c)n.

In this form, repeated differentiation produces

P ′
n(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + · · ·+ nan(x − c)n−1

P ′′
n (x) = 2a2 + 2(3a3)(x − c) + · · ·+ n(n − 1)an(x − c)n−2

P ′′′
n (x) = 2(3a3) + · · ·+ n(n − 1)(n − 2)an(x − c)n−3

...

P
(n)
n (x) = n(n − 1)(n − 2) · · · (2)(1)an.
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Letting x = c , you then obtain

Pn(c) = a0, P ′
n(c) = a1, P ′′

n (c) = 2a2, . . . , P
(n)
n (c) = n!an.

Because the values of f and its first n derivatives must agree with the
values of Pn and its first n derivatives at x = c , it follows that

f (c) = a0, f ′(c) = a1,
f ′′(c)

2!
= a2, . . . ,

f (n)(c)

n!
= an.
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Definition 9.6 (Taylor polynomial and Maclaurin polynomial)

If f has n derivatives at c , then the polynomial

Pn(x) = f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n

is called the nth Taylor polynomial for f at c . If c = 0, then

Pn(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn

is also called the nth Maclaurin polynomial for f at c .
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Example 3 (A Maclaurin polynomial for f (x) = ex)

Find the nth Maclaurin polynomial for f (x) = ex .

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 99 / 160



Example 4 (Finding Taylor polynomials for ln x)

Find the Taylor polynomials P0, P1, P2, P3, and P4, for ln x centered at
c = 1.

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 100 / 160



Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 101 / 160



(a) n = 1 (b) 2

(c) n = 3 (d) n = 4

Figure 5: As n increases, the graph of Pn, becomes a better and better
approximation of the graph of f (x) = ln x near x = 1.
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Example 5 (Finding Maclaurin polynomials for cos x)

Find the Maclaurin polynomials P0, P2, P4, and P6 for f (x) = cos x . Use
P6(x) to approximate the value of cos(0.1).
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Figure 6: Near (0, 1), the graph of P6 can be used to approximate the graph of
f (x) = cos x .
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Example 6 (Finding a Taylor polynomial for sin x)

Find the third Taylor polynomial for f (x) = sin x , expanded about
c = π/6.
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Figure 7: Near (π/6, 1/2), the graph of P3 can be used to approximate the graph
of f (x) = sin x .
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Example 7 (Approximation using Maclaurin polynomials)

Use a fourth Maclaurin polynomial to approximate the value of ln(1.1).
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Remainder of a Taylor polynomial

An approximation technique is of little value without some idea of its
accuracy. To measure the accuracy of approximating a function value
f (x) by the Taylor polynomial Pn(x), you can use the concept of a
remainder Rn(x), defined as follows.

So, Rn(x) = f (x)− Pn(x). The absolute value of Rn(x) is called the
error associated with the approximation. That is,

Error = |Rn(x)| = |f (x)− Pn(x)|

The next theorem gives a general procedure for estimating the
remainder associated with a Taylor polynomial.
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This important theorem is called Taylor’s Theorem, and the remainder
given in the theorem is called the Lagrange form of the remainder.

Theorem 9.19 (Taylor’s Theorem)

If a function f is differentiable through order n + 1 in an interval I
containing c , then, for each x in I , there exists z between x and c such
that

f (x) = f (c)+ f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2+ · · ·+ f (n)(c)

n!
(x−c)n+Rn(x)

where

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − c)n+1.
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Example 8 (Determining the accuracy of an approximation)

The third Maclaurin polynomial for sin x is given by

P3(x) = x − x3

3!
.

Use Taylor’s Theorem to approximate sin(0.1) by P3(0.1) and determine
the accuracy of the approximation.

Using Taylor’s Theorem, you have

sin x = x − x3

3!
+ R3(x) = x − x3

3!
+

f (4)(z)

4!
x4

where 0 < z < 0.1.

Therefore,

sin(0.1) ≈ 0.1− (0.1)3

3!
≈ 0.1− 0.000167 = 0.099833.
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Because f (4)(z) = sin z , it follows that the error |R3(0.1)| can be
bounded as follows.

0 < R3(0.1) =
sin z

4!
(0.1)4 <

0.0001

4!
≈ 0.000004.

This implies that

0.099833 < sin(0.1) = 0.099833 + R3(x) < 0.099833 + 0.000004

0.099833 < sin(0.1) < 0.099837. ■
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Power series

An important function f (x) = ex can be represented exactly by an
infinite series called a power series. For example, the power series
representation for ex is

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

For each real number x , it can be shown that the infinite series on the
right converges to the number ex .
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Definition 9.7 (Power series)

If x is a variable, then an infinite series of the form

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·+ anx

n + · · ·

is called a power series. More generally, an infinite series of the form

∞∑
n=0

an(x−c)n = a0+a1(x−c)+a2(x−c)2+a3(x−c)3+· · ·+an(x−c)n+· · ·

is called a power series centered at c , where c is a constant.
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Example 1 (Power series)

a. The following power series is centered at 0.

∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·

b. The following power series is centered at −1.

∞∑
n=0

(−1)n(x + 1)n = 1− (x + 1) + (x + 1)2 − (x + 1)3 + · · ·

c. The following power series is centered at 1.

∞∑
n=1

1

n
(x − 1)n = (x − 1) +

1

2
(x − 1)2 +

1

3
(x − 1)3 + · · ·

■
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Radius and interval of convergence

A power series in x can be viewed as a function of x

f (x) =
∞∑
n=0

an(x − c)n

where the domain of f is the set of all x for which it converges.
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Theorem 9.20 (Convergence of a power series)
For a power series centered at c , precisely one of the following is true.

1. The series converges only at c .

2. There exists a real number R > 0 such that the series converges
absolutely for |x − c | < R, and diverges for |x − c | > R.

3. The series converges absolutely for all x .

The number R is the radius of convergence. If the series converges only at
c , the radius of convergence is R = 0, and if the series converges for all x ,
the radius of convergence is R = ∞. The set of all values of x for which it
converges is the interval of convergence of the power series.
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Example 2 (Finding the radius of convergence)

Find the radius of convergence of
∑∞

n=0 n!x
n.
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Example 3 (Finding the radius of convergence)

Find the radius of convergence of
∑∞

n=0 3(x − 2)n.
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Example 4 (Finding the radius of convergence)

Find the radius of convergence of
∑∞

n=0
(−1)nx2n+1

(2n+1)! .
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Differentiation and integration of power series

Theorem 9.21 (Properties of functions defined by power series)

If the function is given by
f (x) =

∑∞
n=0 an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·

has a radius of convergence of R > 0, then, on the interval
(c − R, c + R), f is differentiable (and therefore continuous).
Moreover, the derivative and antiderivative of f are as follows.
1. f ′(x) =

∑∞
n=1 nan(x − c)n−1 = a1 + 2a2(x − c) + 3a3(x − c)2 + · · ·

2.∫
f (x) dx = C+

∑∞
n=0 an

(x−c)n+1

n+1 = C+a0(x−c)+a1
(x−c)2

2 +a2
(x−c)3

3 +· · ·
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Theorem 9.21

The radius of convergence of the series obtained by differentiating or
integrating a power series is the same as that of the original power
series. The interval of convergence, however, may differ as a result of
the behavior at the endpoints.

The interval of convergence of the series obtained by differentiating a
power series may get worse but cannot get improved. However, the
interval of convergence of the series obtained by integrating a power
series may get improve but cannot get worse.
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Example 8 (Intervals of convergence for f (x), f ′(x), and
∫
f (x) dx)

Consider the function given by

f (x) =
∞∑
n=1

xn

n
= x +

x2

2
+

x3

3
+ · · · .

Find the interval of convergence for each of the following.
a.

∫
f (x) dx b. f (x) c. f ′(x)
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(a) Interval: [−1, 1]
and radius: R = 1.

(b) Interval: [−1, 1)
and radius: R = 1.

(c) Interval: (−1, 1)
and radius: R = 1.

Figure 8: Intervals of convergence for f (x), f ′(x), and
∫
f (x)dx .

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 126 / 160



Table of Contents

1 Sequences

2 Series and convergence

3 The Integral Test and p-series

4 Comparisons of series

5 Alternating series

6 The Ratio and Root Test

7 Taylor polynomials and approximations

8 Power series

9 Representation of functions by power series

10 Taylor and Maclaurin series

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 127 / 160



Geometric power series

Consider the function given by f (x) = 1/(1− x). The form of f
closely resembles the sum of a geometric series

∞∑
n=0

arn =
a

1− r
, |r | < 1.

In other words, if you let a = 1 and r = x , a power series
representation for 1/(1− x), centered at 0, is

1

1− x
=

∞∑
n=0

xn = 1 + x + x2 + x3 + · · · , |x | < 1.

Of course, this series represents f (x) = 1/(1− x) only on the interval
(−1, 1), whereas f is defined for all x ̸= 1, To represent f in another
interval, you must develop a different series.
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For instance, to obtain the power series centered at −1, you could
write

1

1− x
=

1

2− (x + 1)
=

1/2

1− [(x + 1)/2]
=

a

1− r

which implies that a = 1/2 and r = (x + 1)/2.

So, for |x + 1| < 2, you have

1

1− x
=

∞∑
n=0

(
1

2

)(
x + 1

2

)n

=
1

2

[
1 +

(x + 1)

2
+

(x + 1)2

4
+

(x + 1)3

8
+ · · ·

]
, |x + 1| < 2

which converges on the interval (−3, 1).
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Figure 9: Definition of different ranges with function.
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Example 1 (Finding a geometric power series centered at 0)

Find a power series for f (x) = 4/(x + 2) centered at 0.
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Example 2 (Finding a geometric power series centered at 1)

Find a power series for f (x) = 1/x , centered at 1.
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Operations with power series

Operations with power series Let f (x) =
∑

anx
n and g(x) =

∑
bnx

n.
1. f (kx) =

∑∞
n=0 ank

nxn

2. f (xN) =
∑∞

n=0 anx
nN

3. f (x)± g(x) =
∑∞

n=0(an ± bn)x
n

Example 3 (Adding two power series)

Find a power series, centered at 0, for f (x) = (3x − 1)/(x2 − 1).
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Example 4 (Finding a power series by integration)

Find a power series for f (x) = ln x , centered at 1.
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Taylor series and Maclaurin series

The development of power series to represent functions is credited to
the combined work of many seventeenth and eighteenth-century
mathematicians.

However, the two names that are most commonly associated with
power series are Brook Taylor and Colin Maclaurin.

Theorem 9.22 (The form of a convergent power series)

If f is represented by a power series f (x) =
∑

an(x − c)n for all x in an
open interval I containing c , then an = f (n)(c)/n! and

f (x) = f (c)+ f ′(c)(x − c)+
f ′′(c)

2!
(x − c)2+ · · ·+ f (n)(c)

n!
(x − c)n + · · · .
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The coefficients of the power series in Theorem 9.22 are precisely the
coefficients of the Taylor polynomials for f (x) at c . For this reason,
the series is called the Taylor series for f (x) at c .

Definition 9.8 (Taylor and Maclaurin series)

If a function f has derivatives of all orders at x = c, then the series

∞∑
n=0

f (n)(c)

n!
(x − c)n = f (c) + f ′(c)(x − c) + · · ·+ f (n)(c)

n!
(x − c)n + · · ·

is called the Taylor series for f (x) at c . Moreover, if c = 0, then the series
is the Maclaurin series for f .
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Example 1 (Forming a power series)

Use the function f (x) = sin x to form the Maclaurin series

∞∑
n=0

f (n)(0)

n!
xn = f (0) + f ′(0)x +

f ′′(0)

2!
x +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 + · · ·

and determine the interval of convergence.
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You cannot conclude that the power series converges to sin x for all x .
You can simply conclude that the power series converges to some
function, but you are not sure what function it is. This is a subtle,
but important, point in dealing with Taylor or Maclaurin series.

To persuade yourself that the series

f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + · · ·

might converge to a function other than f , remember that the
derivatives are being evaluated at a single point.

It can easily happen that another function will agree with the values
of f (n)(x) when x = c and disagree at other x-values.
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If you formed the power series for the function shown in Figure 10,
you would obtain the same series as in Example 1. You know that the
series converges for all x , and yet it obviously cannot converge to
both f (x) and sin x for all x .

Figure 10: f (x) ̸= sin x for all x but both have the same Taylor series.
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Let f have derivatives of all orders in an open interval I centered at c.

The Taylor series for f may fail to converge for some x in I . Or, even
if it is convergent, it may fail to have f (x) as its sum.

Nevertheless, Theorem 9.19 tells us that for each n,

f (x) = f (c)+f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2+· · ·+ f (n)(c)

n!
(x−c)n+Rn(x)

where

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − c)n+1.
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Theorem 9.23 (Convergence of Taylor series)

If limn→∞ Rn = 0 for all x in the interval I , then the Taylor series for f
converges and equals f (x),

f (x) =
∞∑
n=0

f (n)(c)

n!
(x − c)n.
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Example 2 (A convergent Maclaurin series)

Show that the Maclaurin series for f (x) = sin x converges to sin x for all x .
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Figure 11 visually illustrates the convergence of the Maclaurin series
for sin x by comparing the graphs of the Maclaurin polynomials
P1(x), P3(x), P5(x), and P7(x) with the graph of the sine function.
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(a) n = 1. (b) n = 3.

(c) n = 5. (d) n = 7.

Figure 11: As n increases, the graph of Pn more closely resembles the sine
function.
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Guidelines for finding a Taylor series

1 Differentiate f (x) several times and evaluate each derivative at c.

f (c), f ′(c), f ′′(c), f ′′′(c), . . . , f (n)(c), . . .

Try to recognize a pattern in these numbers.

2 Use the sequence developed in the first step to form the Taylor
coefficients an = f (n)(c)/n!, and determine the interval of
convergence for the resulting power series

f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + · · · .

3 Within this interval of convergence, determine whether or not the
series converges to f (x).

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series February 2, 2024 148 / 160



Example 3 (Maclaurin series for a composite function)

Find the Maclaurin series for f (x) = sin x2.
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Binomial series

Example 4 (Binomial series)

Find the Maclaurin series for f (x) = (1 + x)k and determine its radius of
convergence. Assume that k is not a positive integer.
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Example 5 (Finding a binomial series)

Find the Maclaurin series for f (x) = 3
√
1 + x .
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Deriving Taylor series from a basic list

Function Interval of convergence
1

x
= 1 − (x − 1) + (x − 1)2 − (x − 1)3 + (x − 1)4 − · · · + (−1)n(x − 1)n + · · · 0 < x < 2

1

1 + x
= 1 − x + x2 − x3 + x4 − x5 + · · · + (−1)nxn + · · · − 1 < x < 1

ln x = (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ · · · +

(−1)(n−1)(x − 1)n

n
+ · · · 0 < x ≤ 2

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · +

xn

n!
+ · · · − ∞ < x < ∞

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− · · · +

(−1)nx2n+1

(2n + 1)!
+ · · · − ∞ < x < ∞

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− · · · +

(−1)nx2n

(2n)!
+ · · · − ∞ < x < ∞

arctan x = x −
x3

3
+

x5

5
−

x7

7
+

x9

9
− · · · +

(−1)nx2n+1

2n + 1
+ · · · − 1 ≤ x ≤ 1

arcsin x = x +
x3

2 · 3
+

1 · 3x5

2 · 4 · 5
+

1 · 3 · 5x7

2 · 4 · 6 · 7
+ · · · +

(2n)!x2n+1

(2nn!)2(2n + 1)
+ · · · − 1 ≤ x ≤ 1

(1 + x)k = 1 + kx +
k(k − 1)x2

2!
+

k(k − 1)(k − 2)x3

3!
+

k(k − 1)(k − 2)(k − 3)x4

4!
+ · · · − 1 < x < 1

The conevrgence at x = ±1 depends on the value of k.
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Euler’s Formula

e ix = cos x + i sin x =
∞∑
n=0

(ix)n

n!

=
∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
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Example 6 (Deriving a power series from a basic list)

Find the power series for f (x) = cos
√
x .
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Example 7 (Multiplication and division of power series)

Find the first three nonzero terms in each Maclaurin series ex arctan x .
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Example 8 (Division of Power Series)

Find the first three nonzero terms in each Maclaurin series tan x .
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Example 9 (A power series for sin2 x)

Find the power series for f (x) = sin2 x .
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Example 10 (Power series approximation of a definite integral)

Use a power series to approximate∫ 1

0
e−x2 dx

with an error of less than 0.01.
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